link

Tuesday, July 9, 2013

medan listrik 1


Suatu benda bermuatan listrik akan menimbulkan medan listrik disekitarnya. Pengaruh medan listrik disuatu titik dinyatakan oleh besaran vektor Kuat Medan Listrik (E), dengan satuan N/C.
E = k Q/R²
Jika suatu benda lain bermuatan Q' ditempatkan di titik tersebut, maka benda bermuatan tersebut akan mengalami GAYA ELEKTROSTATIK F(disebut juga GAYA COULOMB).
F = Q E = k Q Q'/R²
dengan F = Gaya tarik/tolak (dalam Newton)
R   = jarak muatan Q dan Q' (dalam meter)
k   = tetapan = ¼o = 9 x 10E9 Nm/coul
Îo = permitivitas vakum = 8,85 x 10E-12 coul²/Nm
Q,Q' = muatan listrik (Coulomb)



Asal medan listrik

Rumus matematika untuk medan listrik dapat diturunkan melalui Hukum Coulomb, yaitu gaya antara dua titik muatan:\


\mathbf{F} = \frac{q_1 q_2}{\left|\mathbf{r}\right|^2}\mathbf{\hat r}.
Menurut persamaan ini, gaya pada salah satu titik muatan berbanding lurus dengan besar muatannya. Medan listrik didefinisikan sebagai suatu konstan perbandingan antara muatan dan gaya[1]:

\mathbf{F} = q\mathbf{E}

\mathbf{E} = \frac{1}{4 \pi \epsilon_0}\ \frac{q} {\left|\mathbf{r}\right|^2}\mathbf{\hat r}
Maka, medan listrik bergantung pada posisi. Suatu medan, merupakan sebuah vektor yang bergantung pada vektor lainnya. Medan listrik dapat dianggap sebagai gradien daripotensial listrik. Jika beberapa muatan yang disebarkan menghasiklan potensial listrik, gradien potensial listrik dapat ditentukan.

Konstanta k

Dalam rumus listrik sering ditemui konstanta k sebagai ganti dari \!1/4\pi\epsilon_0 (dalam tulisan ini tetap digunakan yang terakhir), di mana konstanta k\! tersebut bernilai [2]:

\! k = \frac{1}{4\pi\epsilon_0} \approx 8.99 \times 10^9 N m2 C-2
yang kerap disebut konstanta kesetaraan gaya listrik [3].

Menghitung medan listrik

Electric Field.pngUntuk menghitung medan listrik di suatu titik \! \vec{r} akibat adanya sebuah titik muatan \! q yang terletak di \! \vec{r}_q digunakan rumus [4]

\vec{E}(\vec{r}-\vec{r}_q) \equiv \vec{E}(\vec{r};\vec{r}_q) \equiv \vec{E}(\vec{r}) = \frac{1}{4 \pi \epsilon_0}\ \frac{q} {\left|\vec{r} - \vec{r}_q\right|^3} \left(\vec{r} - \vec{r}_q \right)

Penyederhanaan yang kurang tepat

Umumnya untuk melakukan penyederhanaan dipilih pusat koordinat berhimpit dengan titik muatan \! q yang terletak di \! \vec{r}_q sehingga diperoleh rumus seperti telah dituliskan pada permulaan artikel ini, atau bila dituliskan kembali dalam notasi vektornya:


\vec{E}(\vec{r}) = \frac{1}{4 \pi \epsilon_0}\ \frac{q} {\left|\vec{r}\right|^3} \vec{r}
dengan vektor satuan \! \hat{r}

\hat{r} = \frac{\vec{r}}{\left| \vec{r} \right|} = \frac{\vec{r}}{r}.
Disarankan untuk menggunakan rumusan yang melibatkan \! \vec{r}_q dan \! \vec{r} karena lebih umum, dan dapat diterapkan untuk kasus lebih dari satu muatan dan juga pada distribusi muatan, baik distribusi diskrit maupun kontinu. Penyederhanaan ini juga kadang membuat pemahaman dalam menghitung medan listrik menjadi agak sedikit kabur. Selain itu pula karena penyederhanaan ini hanya merupakan salah satu kasus khusus dalam perhitungan medan listrik (kasus oleh satu titik muatan di mana titik muatan diletakkan di pusat koordinat).

Tanda muatan listrik

Electric Field Lines.svgMuatan listrik dapat bernilai negatif, nol (tidak terdapat muatan atau jumlah satuan muatan positif dan negatif sama) dan negatif. Nilai muatan ini akan memengaruhi perhitungan medan listrik dalam hal tandanya, yaitu positif atau negatif (atau nol). Apabila pada setiap titik di sekitar sebuah (atau beberapa) muatan dihitung medan listriknya dan digambarkan vektor-vektornya, akan terlihat garis-garis yang saling berhubungan, yang disebut sebagai garis-garis medan listrik. Tanda muatan menentukan apakah garis-garis medan listrik yang disebabkannya berasal darinya atau menuju darinya. Telah ditentukan (berdasarkan gaya yang dialami oleh muatan uji positif), bahwa
  • muatan positif (+) akan menyebabkan garis-garis medan listrik berarah dari padanya menuju keluar,
  • muatan negatif (-) akan menyebabkan garis-garis medan listrik berarah menuju masuk padanya.
  • muatan nol ( ) tidak menyebabkan adanya garis-garis medan listrik.

No comments:

Post a Comment