link

Showing posts with label materi fisika. Show all posts
Showing posts with label materi fisika. Show all posts

Monday, December 26, 2016

Muatan listrik

terdapat dua jenis muatan dan muatan yang sejenis selalu tolak menolak dan muatan tak sejenis selalu tarik menarik. Benyamin Franklin (1706-1790) menyebut dua jenis muatan tersebut muatan positif dan negatif, semua benda terbuat dari atom. Atom terdiri dari elektron bermuatan negatif yang mengitari inti atom yang terdiri dari proton bermuatan positif dan neutron yang tidak bermuatan.

Elektron dan proton bermuatan sama besar tetapi beda jenis. Atom normal memiliki cukup elektron untuk mengimbangi proton di inti sehingga atom menjadi netral

Jika salah satu elektron dipindahkan dari sebuah atom, atom akan menjadi ion bermuatan positif. Elektron adalah materi penyusun muatan yang dapat dipindahkan dari suatu benda ke benda lain. Elektron juga dapat berpindah dari benda yang sama, misalnya dalam kawat penghantar.

Contoh elektron pindah dari suatu benda ke benda lain :

ketika kita menggosok tongkat plastik dengan bulu, beberapa elektron bulu tersapu bersih, dan pindah ke tongkat plastik sehingga tongkat mendapat muatan negatif dan bulu menjadi muatan positif.

Demikian juga dengan sutra yang digunakan untuk menyapu mistar mika, sutra menyapu bersih elektron mistar dan mistar menjadi bermuatan positif.

Tuesday, August 11, 2015

TABUNG DETEKTOR GEIGER MULLER (GM),TABUNG SINTILASI, KAMAR KABUT WILSON, EMULSI FILM

TABUNG DETEKTOR GEIGER MULLER (GM)

Detektor GM bekerja pada tegangan yang sangat tinggi, yaitu 1000volt - 1400volt. Detektor ini menghasilkan sebuah pulsa listrik dari setiap partikel tunggal yang datang padanya., dan tidak tergantung pada energi radiasi.Biasanya detektor ini digunakan untuk mendeteksi sinar gamma (yang madah menembus dinding tabung) namun sinar betapapun dapat dideteksi, yaitu melalui jendela ujung yang biasanya terbuat dari mika yang sangattipis agar dinar beta dapat menembusnya.
Sinar gamma yang menembus dinding (katoda) menyebabkan atom gas terionisasi, sehingga ada elektron yang keluar dari ikatan atomnya, kemudian menumbuk anoda sehingga terjadi pulsa listrik yang kemudian diperkuet dan dicatat pada alat pencatat (scaler). Dengan demikian untuk sinar beta, akan menjadi ionisasi. Ion negatif menuju anoda sebagai pulsa listrik dan seterusnya.

TABUNG SINTILASI
Setiap partikel radiasi didalam sintilator menghasilkan satu puksa cahaya. Radiasi yang datang pada sintilator akan menimbulkan foton, akibat dari eksitasi atom gas. Foton ini kemudian diteruskan ke bagian-bagian photomultiplier yang dalamnya terdapat dynode-dynode yang berurutan yang diberi tegangan satu lebih tinggi. Foton tersebut menumbuk dynoda sehingga menghasilkan foto elektron. Foto elektron tersebut kemudian menumbuk dynoda berikutnya dan akhirnya terjadi elektron sekunder, sehingga didapatkan elektron berlipat ganda. Elektron ini dipergunakan untuk pengukuran energi radiasi (sopektrometeri energi) ukuran pulsa-pulsa listrik yang terjadi sebanding dengan energi radiasi dan jumlah pulsa sebanding dengan jumlah partikel radiasi.


KAMAR KABUT WILSON

Uap (alkohol) jenuh diembunkan pada ion-ion udara yang ditimbulkan oleh radiasi. Akibatnya, terlihat garis putih dari tetesan-tetesan zat cair yang sangat kecil, yang merupakan jejal lintasan dalam kamar tersebut, asal diterangi dengan tepat. Perlu dicatat, bahwa yang kita lihat hanyalah jejak lintasan, bukan radiasi yang menimbulkan ionisasi.
terdapat tiga jenis kamar kabut yaitu :
-Expansion cloud chamber (kamar kabut pemuaian)
-Diffusion cloud chamber (kamar kabut diffusi)
-Bubble chamber (kamar gelembung)
pada bubble chamber radiasi yang mengionkan akan mennggalkan jejak berupa gelembung-gelembung didalam hidrogen cair. Pada sistem ini perkiraan massa dan kelanjutannya dapat diperoleh, berdasarkan hukum kekekalan energi dan momentum.

EMULSI FILM


Garis-garis sinar dari ketiga jenis radiasi, dapat juga dipelajari pada film fotografi. Emulsi film foto, dapat mengurangi jangkauan partikel alpha sekitar 0,002mm dan bahkan garis lintasan partikel beta, hanya sekitar 1 mm. Karena itu, harus menggunakan mikroskop untuk mengamatinya. Emulsi nuklir yang khusus, digunakan untuk maksud ini. Emulsi tersebut lebih tebal dari biasanya dan mempunyai kepekaan butir-butir perak bromida yang lebih tinggi. Metoda ini mempunyai keuntungan karena secara otomatis diperoleh rekaman yang permanen dari gejala yang dipelajari.

ALAT-ALAT DETEKSI Radiasi Radioaktif

ALAT-ALAT DETEKSI
a. Pencacah Geiger (penghitung Geiger Muller)
b. Kamar kabut Wilson (Geiger Chamber)
c. Imulsi Film
d. Detektor Sintilasi

Orang mengenal radiasi radioaktif pertama kali melalui pelat foto, kemudian berkembang menjadi alat deteksi emulsi fotografi. Perkembangan alat deteksi tersebut kemudian disusul dengan detektor Geiger Muller yang memanfaatkan ionisasai menjadi pulsa listrik.Kemudian alat ini berkembang menjadi tabung ionisasi dan tabung detektor proporsional. Dengan ditemukannya bahan-bahan sintilasi, yaitu bahan yang jika ditembus radiasi akan memancarkan cahaya, timbul adanya detektor sintilasi.

Pada dasarnya sistem peralatan deteksi radiasi dapat digolongkan menjadi dua bagian utama, bagian pertama adalah transduser yang disebut detektor, yaitu berupa alat yang mengubah radiasi radioaktif menjadi sinyal elektris. bagian kedua berupa alat elektronik yang mampu memperkuat dan memproses sinyal listrik menjadi besaran yang diamati.

Detektor tabung ionisasi, tabung proporsional dan tabung Geiger Muller merupakan alat yang sejenis. Semuanya memiliki bentuk dasar yang sama serta mempergunakan ruang tertutup yang berisi gas atau campuran gas, dilengkapi dengan anoda dan katoda dengan bentuk sedemikian rupa, sehingga medan listrik memungkinkan terjadi ionisasi secara effisien.Jadi, semua memanfaatkan ionisasi menjadi pulsa listrik. Detektor sintilasi mempergunakan dasar penyeleksianyang sangat berbeda dengan jenis tabung Geiger Muller. Detektor sintilasi memanfaatkan cahaya yang timbul pada interaksi radiasi, sehingga memerlukan bahan yang mengeluarkan cahaya jika kena radiasi, seperti pada layar CRO atau layar televisi.bahan yang demikian itu disebut sintilator. Sintilator mempunyai sifat bahwa intensitas cahaya yang tinmbul sebanding dengan energi radiasi yang mengenainya, sehingga sangat menguntungkan jika digunakan untuk mengukur energi radiasi

REAKSI FISI DAN FUSI



a. FISI       :adalah reaksi pembelahan dari sebuah atom menjadi dua bagian atom lain yang disertai dengan pelepasan tenaga.
contoh  :
0n1   +  92U235  ® 56Ba144  +  36Kr89  +  30n1  +  tenaga
(bahan baku : unsur berat (misal : uranium ))
b.FUSI      adalah reaksi penggabungan 2 buah unsur ringan disertai pengeluaran tenaga.
contoh  :
1H2  +  1H2 ® 2He4  +  tenaga
-tenaga fusi> tenaga fisi
-fisi lebih muda terjadi daripada fusi, (fusi temperatur harus tinggi).

reaksi inti dan reaksi berantai

REAKSI INTI

Zat radioaktif alam mempunyai inti yang berubah dengan sendirinya setelah memancarkan sinar radioaktif., tetapi inti atom yang tidak bersifat radioaktif dapat diubah sehingga menjadi zat radioaktif (radioaktif buatan).yaitu dengan jalan menembaki inti itu dengan partikel-partikel (ingat peristiwa transmutasi)yang mempunyai kecepatan tinggi.
Penembakan inti dengan kecepatan tinggi ini disebut reaksi inti.
contoh :   2He4  +  7N14 ® 8O17  +  1H1

 REAKSI BERANTAI

Reaksi yang berulang hanya berakhir akibat zat yang bereaksi itu habis atau berubah menjadi zat yang lain.
contoh : Reaksi berantai ENRICO PERMI  (1937)
92U235  +  0n1  ® 92U236 ® 54Xe140  +  38Sr94  +  0n1  +  0n1
tak stabil
Hasil reaksi ini masih mengandung 2 buah NETRON (0n1) sehingga netron ini akan menembak uranium lian sehingga terjadi reaksi seperti semula.

                                    Sr         Xe       Sr                                 (n)
                                                                        (n)        U
                                    (n)                    U                                 (n)
                                                                        (n)        U         (n)
                                                                                                (n)
                                    (n)                    U         (n)        U
                                                                        (n)        U
                                    Xe       Xe       Sr


Tiada reaksi seperti ini akan dibebaskan tenaga dalam bentuk panas.

Friday, January 2, 2015

Lup (kaca pembesar)


Lup (kaca pembesar) dipakai untuk melihat benda-benda kecil agar tampak lebih besar dan jelas. Oleh tukang arloji, lup dipakai agar bagian jam yang diperbaikinya kelihatan lebih besar dan jelas. Oleh siswa saat praktikum biologi, lup dipakai untuk mengamati bagian hewan atau tumbuhan agar kelihatan besar dan jelas.

 Sebagai alat optik, lup berupa lensa cembung tebal (berfokus pendek). Sifat bayangan yang diharapkan dari benda kecil yang dilihat dengan lup adalah tegak dan diperbesar. Orang yang melihat benda dengan menggunakan lup akan mempunyai sudut penglihatan (sudut anguler) yang lebih besar daripada orang yang melihat dengan mata biasa. Ada dua cara memakai lup, yaitu dengan mata tak berakomodasi dan mata berakomodasi.

Melihat dengan mata tak berakomodasi
Untuk melihat tanpa berakomodasi maka lup harus membentuk bayangan di jauh tak berhingga. Benda yang dilihat harus diletakkan tepat pada titik fokus lup. Perhatikan Gambar dibawah !

Keuntunganya adalah untuk pengamatan lama mata tidak cepat lelah, sedangkan kelemahannya dari segi perbesaran berkurang. Sifat bayangan yang dihasilkan maya, tegak dan diperbesar.
Perbesaran anguler yang didapatkan adalah :
            M= pp/f
Keterangan :
M = perbesaran lup
PP= titik dekat mata
f = jarak titik fokus lensa

Melihat dengan mata berakomodasi
Agar mata dapat melihat dengan berakomodasi maksimum, maka bayangan yang dibentuk oleh lensa harus berada di titik dekat mata (PP). Benda yang dilihat harus terletak antara titik fokus dan titik pusat sumbu lensa.Perhatikan Gambar di bawah !

Kelemahannya untuk pengamatan lama mata cepat lelah, sedangkan keuntungannya dari segi perbesaran bertambah.
Sifat bayangan yang dihasilkan maya, tegak dan diperbesar.
Perbesaran anguler yang didapatkan adalah :
M = PP/f +1
Keterangan :
M = perbesaran lup
PP= titik dekat mata

Thursday, January 1, 2015

Daya Akomodasi Mata




Perlu diketahui bahwa jarak antara lensa mata dan retina selalu tetap. Sehingga dalam melihat benda-benda pada jarak tertentu perlu mengubah kelengkungan lensa mata. Untuk mengubah kelengkungan lensa mata, yang berarti mengubah jarak titik fokus lensa merupakan tugas otot siliar. Hal ini dimaksudkan agar bayangan yang dibentuk oleh lensa mata selalu jatuh di retina. Pada saat mata melihat dekat lensa mata harus lebih cembung (otot-otot siliar menegang) dan pada saat melihat jauh lensa harus lebih pipih (otot-otot siliar mengendor). Peristiwa perubahan-perubahan ini disebut daya akomodasi.

Daya akomodasi (daya suai) adalah kemampuan otot siliar untuk menebalkan atau memipihkan kecembungan lensa mata yang disesuaikan dengan dekat atau jauhnya jarak benda yang dilihat.
Manusia memiliki dua batas daya akomodasi (jangkauan penglihatan) yaitu :
1.     Titik dekat mata (punctum proximum) adalah jarak benda terdekat di depan mata yang masih dapat dilihat dengan jelas. Untuk mata normal (emetropi) titik dekatnya berjarak 10cm s/d 20cm (untuk anak-anak) dan berjarak 20cm s/d 30cm (untuk dewasa). Titik dekat disebut juga jarak baca normal.
2.     Titik jauh mata (punctum remotum) adalah jarak benda terjauh di depan mata yang masih dapat dilihat dengan jelas. Untuk mata normal titik jauhnya adalah “tak terhingga”.

Tuesday, December 30, 2014

soal dan pembahasan menetukan dimensi suatu besaran


Contoh Soal : menetukan dimensi suatu besaran
Tentukan dimensi dari besaran-besaran berikut ini : (a) volum, (b) massa jenis, (c) percepatan, (d) usaha
Petunjuk :  anda harus menulis rumus dari besaran turunan yang akan ditentukan dimensinya terlebih dahulu. Selanjutnya rumus tersebut diuraikan sampai hanya terdiri dari besaran pokok.
Jawaban :
(a)    Persamaan Volum (V=volume) adalah panjang x lebar x tinggi . Panjang, lebar dan tinggi memiliki dimensi yang sama yaitu panjang [L].  Jadi dimensi volum = [L] [L] [L] = [L]3.
(b)   Persamaan Massa Jenis (, dibaca rho) adalah (massa per volum). Dimensi massa = [M] sedangkan dimensi volum = [L]3. Jadi dimensi massa jenis =
(c)    Persamaan Percepatan (a=acceleration) adalah . Persamaan Kecepatan = . Sebelum menentukan dimensi Percepatan, terlebih dahulu kita tentukan dimensi kecepatan. Telah kita ketahui bahwa Dimensi Perpindahan adalah Panjang [L] dan dimensi waktu [T]. Dengan demikian Dimensi Kecepatan = atau [L][T]-1. Dimensi kecepatan sudah diketahui, sedangkan dimensi waktu = [L], maka dimensi percepatan adalah =
(d)   Persamaan Usaha (W=weight) adalah Gaya (F=force) x Perpindahan (s). Gaya merupakan besaran turunan, di mana persamaan Gaya adalah massa (m) x percepatan (a). Percepatan juga merupakan besaran turunan, sehingga kita terlebih dahulu harus menentukan dimensi percepatan (lihat nomor c). Dimensi percepatan adalah .  Dimensi massa adalah [M]. Jadi dimensi Gaya adalah [M][l][T]-2. Sekarang kita sudah bisa menentukan dimensi Usaha. Dimensi Perpindahan = [L], maka dimensi Usaha =  

Analisis dimensi



Analisis dimensi adalah alat konseptual yang sering diterapkan dalam fisika, kimia dan teknik untuk memahami keadaan fisis yang melibatkan besaran fisis yang berbeda-beda. Analisis dimensi selalu digunakan dalam fisika dan teknik untuk memeriksa ketepatan penurunan persamaan. Misalnya, jika suatu besaran fisis memiliki satuan massa dibagi satuan volume namun persamaan hasil penurunan hanya memuat satuan massa, persamaan tersebuttidak tepat. Hanya besaran-besaran berdimensi sama yang dapat saling ditambahkan, dikurangkan atau disamakan. Jika besaran-besaran berbeda dimensi terdapat di dalam persamaan dan satu sama lain dibatasi tanda "+" atau "−" atau "=", persamaan tersebut harus dikoreksi terlebih dahulu sebelum digunakan. Jika besaran-besaran berdimensi sama maupun berbeda dikalikan atau dibagi, dimensi besaran-besaran tersebut juga terkalikan atau terbagi. Jika besaran berdimensi dipangkatkan, dimensi besaran tersebut juga dipangkatkan.

Seringkali kita dapat menentukan bahwa suatu rumus salah hanya dengan melihat dimensi atau satuan dari kedua ruas persamaan. Sebagai contoh, ketika kita menggunakan rumus A= 2.phi.r untuk menghitung luas. Dengan melihat dimensi kedua ruas persamaan, yaitu [A] = L2 dan [2.phi.r] = L kita dengan cepat dapat menyatakan bahwa rumus tersebut salah karena dimensi kedua ruasnya tidak sama. Tetapi perlu diingat, jika kedua ruas memiliki dimensi yang sama, itu tidak berarti bahwa rumus tersebut benar. Hal ini disebabkan pada rumus tersebut mungkin terdapat suatu angka atau konstanta yang tidak memiliki dimensi, misalnya Ek = 1/2 mv2 , di mana 1/2 tidak bisa diperoleh dari analisis dimensi.
Anda harus ingat karena dalam suatu persamaan mungkin muncul angka tanpa dimensi, maka angka tersebut diwakili dengan suatu konstanta tanpa dimensi, misalnya konstanta k.

Dimensi


           
Dimensi besaran diwakili dengan simbol, misalnya M, L, T yang mewakili massa (mass), panjang (length) dan waktu (time). Ada dua macam dimensi yaitu Dimensi Primer dan Dimensi Sekunder. Dimensi Primer meliputi M (untuk satuan massa), L (untuk satuan panjang) dan T (untuk satuan waktu). Dimensi Sekunder adalah dimensi dari semua Besaran Turunan yang dinyatakan dalam Dimensi Primer. Contoh : Dimensi gaya : M L T-2 dan Dimensi percepatan : L T-2

Catatan :
Semua besaran fisis dalam mekanika dapat dinyatakan dengan tiga besaran pokok (Dimensi Primer) yaitu panjang, massa dan waktu. Sebagaimana terdapat Satuan Besaran Turunan yang diturunkan dari Satuan Besaran Pokok, demikian juga terdapat Dimensi Primer dan Dimensi Sekunder yang diturunkan dari Dimensi Primer. 
Manfaat Dimensi dalam Fisika adalah : (1) dapat digunakan untuk membuktikan dua besaran sama atau tidak. Dua besaran sama jika keduanya memiliki dimensi yang sama atau keduanya termasuk besaran vektor atau skalar, (2) dapat digunakan untuk menentukan persamaan yang pasti salah atau mungkin benar, (3) dapat digunakan untuk menurunkan persamaan suatu besaran fisis jika  kesebandingan besaran fisis tersebut dengan besaran-besaran fisis lainnya diketahui.
Satuan dan dimensi suatu variabel fisika adalah dua hal berbeda. Satuan besaran fisis didefinisikan dengan perjanjian, berhubungan dengan standar tertentu (contohnya, besaran panjang dapat memiliki satuan meter, kaki, inci, mil, atau mikrometer), namun dimensi besaran panjang hanya satu, yaitu L. Dua satuan yang berbeda dapat dikonversikan satu sama lain (contohnya: 1 m = 39,37 in; angka 39,37 ini disebut sebagai faktor konversi), sementara tidak ada faktor konversi antarlambang dimensi.
Berikut adalah tabel yang menunjukkan dimensi dan satuan tujuh besaran dasar dalam sistem SI.
Besaran
Dimensi
Satuan (SI)
Panjang
M
m
Massa
L
Kg
Waktu
T
s
Suhu
Θ
K
Arus Listrik
E
A
Intensitas Cahaya
I
cd
Jumlah zat
A
Mol

Sunday, December 28, 2014

gaya berat dan gaya gesek


Gaya berat


Berat suatu benda adalah gaya tarikan gravitasi antara benda dengan bumi.  Gaya berat sebanding dengan massa benda m dan medan gravitasi g, yang sama dengan percepatan gravitasi benda yang jatuh bebas

 w=m.g

Berat bukan sifat intrinsik benda, dan besarnya bergantung pada lokasi benda.

Gaya gesek


Saat suatu benda tergelincir (slides) di atas suatu permukaan maka interaksi antara benda dan permukaan dinyatakan dengan gaya gesek yang arahnya berlawanan dengan arah gerak benda dan disebut gaya gesek kinetik, yang besarnya 
 

mk adalah koefisien gesek kinetik antara benda dan permukaan dan N adalah gaya normal.
Gaya gesek yang bekerja pada benda pada keadaan diam (benda tidak bergerak relatif terhadap permukaan) disebut gaya gesek statik, yang nilainya dinyatakan dengan
         
 
ms adalah koefisien gesek statik antara benda dan permukaan

Hukum-hukum Newton


1.       Suatu benda tetap pada keadaan awalnya (diam atau bergerak dengan kecepatan tetap) kecuali jika ada gaya eksternal yang bekerja pada benda.


2.       Percepatan suatu benda sebanding dengan gaya eksternal yang bekerja pada benda.

 a=F/m
®mendefinisikan gaya.
®massa adalah sifat intrinsik benda yang menyatakan sulit tidaknya benda bergerak
®massa sebuah benda tidak bergantung pada lokasi benda

3.       Gaya-gaya selalu terjadi berpasangan.  Jika benda A memberikan gaya pada benda B, maka benda B akan memberikan gaya yang besarnya sama tapi arahnya berlawanan pada benda A.
®gaya aksi-reaksi
®gaya aksi-reaksi tidak pernah dapat saling mengimbangi karena masing-masing bekerja pada benda yang berbeda

 Secara sederhana gaya dikelompokkan menjadi 2 jenis, yaitu

  • gaya kontak : gaya gesek, gaya tegangan tali, gaya normal, gaya pegas, gaya hambat oleh udara, gaya eksternal yang diberikan, dll
  • gaya yang bekerja meskipun ada jarak dengan penyebab gaya : gaya gravitasi, gaya coulomb, gaya magnet
®konsep medan gaya