link

Tuesday, August 11, 2015

TABUNG DETEKTOR GEIGER MULLER (GM),TABUNG SINTILASI, KAMAR KABUT WILSON, EMULSI FILM

TABUNG DETEKTOR GEIGER MULLER (GM)

Detektor GM bekerja pada tegangan yang sangat tinggi, yaitu 1000volt - 1400volt. Detektor ini menghasilkan sebuah pulsa listrik dari setiap partikel tunggal yang datang padanya., dan tidak tergantung pada energi radiasi.Biasanya detektor ini digunakan untuk mendeteksi sinar gamma (yang madah menembus dinding tabung) namun sinar betapapun dapat dideteksi, yaitu melalui jendela ujung yang biasanya terbuat dari mika yang sangattipis agar dinar beta dapat menembusnya.
Sinar gamma yang menembus dinding (katoda) menyebabkan atom gas terionisasi, sehingga ada elektron yang keluar dari ikatan atomnya, kemudian menumbuk anoda sehingga terjadi pulsa listrik yang kemudian diperkuet dan dicatat pada alat pencatat (scaler). Dengan demikian untuk sinar beta, akan menjadi ionisasi. Ion negatif menuju anoda sebagai pulsa listrik dan seterusnya.

TABUNG SINTILASI
Setiap partikel radiasi didalam sintilator menghasilkan satu puksa cahaya. Radiasi yang datang pada sintilator akan menimbulkan foton, akibat dari eksitasi atom gas. Foton ini kemudian diteruskan ke bagian-bagian photomultiplier yang dalamnya terdapat dynode-dynode yang berurutan yang diberi tegangan satu lebih tinggi. Foton tersebut menumbuk dynoda sehingga menghasilkan foto elektron. Foto elektron tersebut kemudian menumbuk dynoda berikutnya dan akhirnya terjadi elektron sekunder, sehingga didapatkan elektron berlipat ganda. Elektron ini dipergunakan untuk pengukuran energi radiasi (sopektrometeri energi) ukuran pulsa-pulsa listrik yang terjadi sebanding dengan energi radiasi dan jumlah pulsa sebanding dengan jumlah partikel radiasi.


KAMAR KABUT WILSON

Uap (alkohol) jenuh diembunkan pada ion-ion udara yang ditimbulkan oleh radiasi. Akibatnya, terlihat garis putih dari tetesan-tetesan zat cair yang sangat kecil, yang merupakan jejal lintasan dalam kamar tersebut, asal diterangi dengan tepat. Perlu dicatat, bahwa yang kita lihat hanyalah jejak lintasan, bukan radiasi yang menimbulkan ionisasi.
terdapat tiga jenis kamar kabut yaitu :
-Expansion cloud chamber (kamar kabut pemuaian)
-Diffusion cloud chamber (kamar kabut diffusi)
-Bubble chamber (kamar gelembung)
pada bubble chamber radiasi yang mengionkan akan mennggalkan jejak berupa gelembung-gelembung didalam hidrogen cair. Pada sistem ini perkiraan massa dan kelanjutannya dapat diperoleh, berdasarkan hukum kekekalan energi dan momentum.

EMULSI FILM


Garis-garis sinar dari ketiga jenis radiasi, dapat juga dipelajari pada film fotografi. Emulsi film foto, dapat mengurangi jangkauan partikel alpha sekitar 0,002mm dan bahkan garis lintasan partikel beta, hanya sekitar 1 mm. Karena itu, harus menggunakan mikroskop untuk mengamatinya. Emulsi nuklir yang khusus, digunakan untuk maksud ini. Emulsi tersebut lebih tebal dari biasanya dan mempunyai kepekaan butir-butir perak bromida yang lebih tinggi. Metoda ini mempunyai keuntungan karena secara otomatis diperoleh rekaman yang permanen dari gejala yang dipelajari.

ALAT-ALAT DETEKSI Radiasi Radioaktif

ALAT-ALAT DETEKSI
a. Pencacah Geiger (penghitung Geiger Muller)
b. Kamar kabut Wilson (Geiger Chamber)
c. Imulsi Film
d. Detektor Sintilasi

Orang mengenal radiasi radioaktif pertama kali melalui pelat foto, kemudian berkembang menjadi alat deteksi emulsi fotografi. Perkembangan alat deteksi tersebut kemudian disusul dengan detektor Geiger Muller yang memanfaatkan ionisasai menjadi pulsa listrik.Kemudian alat ini berkembang menjadi tabung ionisasi dan tabung detektor proporsional. Dengan ditemukannya bahan-bahan sintilasi, yaitu bahan yang jika ditembus radiasi akan memancarkan cahaya, timbul adanya detektor sintilasi.

Pada dasarnya sistem peralatan deteksi radiasi dapat digolongkan menjadi dua bagian utama, bagian pertama adalah transduser yang disebut detektor, yaitu berupa alat yang mengubah radiasi radioaktif menjadi sinyal elektris. bagian kedua berupa alat elektronik yang mampu memperkuat dan memproses sinyal listrik menjadi besaran yang diamati.

Detektor tabung ionisasi, tabung proporsional dan tabung Geiger Muller merupakan alat yang sejenis. Semuanya memiliki bentuk dasar yang sama serta mempergunakan ruang tertutup yang berisi gas atau campuran gas, dilengkapi dengan anoda dan katoda dengan bentuk sedemikian rupa, sehingga medan listrik memungkinkan terjadi ionisasi secara effisien.Jadi, semua memanfaatkan ionisasi menjadi pulsa listrik. Detektor sintilasi mempergunakan dasar penyeleksianyang sangat berbeda dengan jenis tabung Geiger Muller. Detektor sintilasi memanfaatkan cahaya yang timbul pada interaksi radiasi, sehingga memerlukan bahan yang mengeluarkan cahaya jika kena radiasi, seperti pada layar CRO atau layar televisi.bahan yang demikian itu disebut sintilator. Sintilator mempunyai sifat bahwa intensitas cahaya yang tinmbul sebanding dengan energi radiasi yang mengenainya, sehingga sangat menguntungkan jika digunakan untuk mengukur energi radiasi

REAKSI FISI DAN FUSI



a. FISI       :adalah reaksi pembelahan dari sebuah atom menjadi dua bagian atom lain yang disertai dengan pelepasan tenaga.
contoh  :
0n1   +  92U235  ® 56Ba144  +  36Kr89  +  30n1  +  tenaga
(bahan baku : unsur berat (misal : uranium ))
b.FUSI      adalah reaksi penggabungan 2 buah unsur ringan disertai pengeluaran tenaga.
contoh  :
1H2  +  1H2 ® 2He4  +  tenaga
-tenaga fusi> tenaga fisi
-fisi lebih muda terjadi daripada fusi, (fusi temperatur harus tinggi).

reaksi inti dan reaksi berantai

REAKSI INTI

Zat radioaktif alam mempunyai inti yang berubah dengan sendirinya setelah memancarkan sinar radioaktif., tetapi inti atom yang tidak bersifat radioaktif dapat diubah sehingga menjadi zat radioaktif (radioaktif buatan).yaitu dengan jalan menembaki inti itu dengan partikel-partikel (ingat peristiwa transmutasi)yang mempunyai kecepatan tinggi.
Penembakan inti dengan kecepatan tinggi ini disebut reaksi inti.
contoh :   2He4  +  7N14 ® 8O17  +  1H1

 REAKSI BERANTAI

Reaksi yang berulang hanya berakhir akibat zat yang bereaksi itu habis atau berubah menjadi zat yang lain.
contoh : Reaksi berantai ENRICO PERMI  (1937)
92U235  +  0n1  ® 92U236 ® 54Xe140  +  38Sr94  +  0n1  +  0n1
tak stabil
Hasil reaksi ini masih mengandung 2 buah NETRON (0n1) sehingga netron ini akan menembak uranium lian sehingga terjadi reaksi seperti semula.

                                    Sr         Xe       Sr                                 (n)
                                                                        (n)        U
                                    (n)                    U                                 (n)
                                                                        (n)        U         (n)
                                                                                                (n)
                                    (n)                    U         (n)        U
                                                                        (n)        U
                                    Xe       Xe       Sr


Tiada reaksi seperti ini akan dibebaskan tenaga dalam bentuk panas.

Dosis Penyerapan radioaktif

DOSIS PENYERAPAN

Jika sinar radioaktif mengenai suatu materi, maka sinar radioaktif itu akan diserap oleh materi tersebut. Besar energi pengion yang diserap oleh materi yang dilalui sinar radioaktif tergantung pada sifat materi dan berkas sinar radioaktif.
DOSIS PENYERAPAN adalah banyaknya energi radiasi pengion yang diserap oleh satu satuan massa materi yang dilalui sinar radioaktif.



Satuan dosis penyerapan adalah Gray (Gy) atau rad.
1 Gy = 1 joule/ kg
1Gy = 0,01 joule/ kg
1Gy = 100 rad

Persamaan dosis penyerapan       D = 

D=E/M

E = energi yang diberikan oleh radiasi pengion, satuannya joule.
M =massa materi yang menyerap energi, satuannya kg

D = dosis penyerapan, satuannya Gy atau rad.

Tranmutasi oleh partikel-partikel yang dipercepat


Tranmutasi dengan sinar ayang berasal dari unsur radioaktif tidak membawa hasil yang memuaskan. Dari sekian banyak partikel-partikel ahanya beberapa yang dapat mengadakan transmutasi.
Hal ini disebabkab karena partikel ayang mendekati inti atom yang mengalami gaya tolak, sehingga hanya partikelayang kecepatannya besar yang dapat sampai pada inti. Transmutasi akan lebih berhasil bila digunakan partikel-partikel yang kecepatan cukup tinggi. Untuk itu diciptakan alat yang dapat mempercepat partikel bermuatan yang disebut Cyclotron.
Pada tahun 1932 Coekroft dan Walton melaporkan hasil reaksi inti dengan proton.
1H1  + 3Li7 ®  2He4    +  2He4
Pada reaksi inti tersebut jumlah energi sebelum reaksi adalah:
energi massa proton       = 1,007825  sma
energi massa litium        = 7,016005  sma
energi kinetik proton
150  keV                        = 0,000160  sma       +
jumlah                            = 8,023990  sma

Jumlah energi sesudah energi  :

energi massa helium 2x4,0026=8,0052 sma
ada selisih sebesar 8,023990-8,0052=0,01879 sma
                                                          =17,4939 MeV
Ketika diukur energi kinetik kedua atom He diperoleh sebesar 17,0 MeV
Suatu persesuaian yang cukup baik

Transmutasi dengan detron yang dipercepat.
13A27   +   1H2 ®12Mg25  +  2He4
Transmutasi dengan netron.

Netron merupakan partikel netral, sangat baik untuk mengadakan transmutasi, sebab hanya mengalami gaya tolak yang kecil ketika menghampiri inti.

7N14  +  0n1®5B11  +  2He4

Netron yang dipakai untuk transmutasi diprodusir dalam reaktor atom.
Dengan netron tersebut dapat diperoleh berbagai macam radio isotop.

11Na23  +  0n1®11Na24

Natrium yang diperoleh adalah isotop radioaktif.
Dengan memancarkan sinar b, isotop natrium berubah menjadi magnesium yang stabil.
                        b

11Na24         12Mg24

TRANSMUTASI


Telah diketahui bahwa adanya perbedaan antara atom yang satu dengan atom yang lain semata-mata karena hanya perbedaan jumlah proton dan neutron yang terdapat dalam inti atom.
Oleh sebab itu jika jumlah proton dan neutron yang menyusun inti dapat kita rubah akan berubalah pula atom itu menjadi atom yang lain.
merubah atom secara buatan lazim disebut TRANSMUTASI
Gagasan merubah inti atom secara buatan dirintis oleh Rutherford.
Pada tahun 1959 Rutherford menempatkan preparat radio akyif yang memancarkan sinaradidalam tabung yang berisi gas niterogen.
Setelah selang waktu tertentu, dalam tabung itu terjadi oksigen dan proton.
Rutherford berpendapat ada partikel-partikel a yang membentur inti atom niterogen sebagai akibat benturan yang amat dasyat, inti niterogen terbelah menjadi proton dan oksigen.
                                                                                   
                                                                                    1P1
                        2a4                         7N14
                                                                                    8O17

Peristiwa itu dapat dipandang sebagai reaksi inti antara partikel a dengan inti niterogen. Reaksi ini lazim dituliskan sebagai berikut :
2a4   +  7N14®8017    +  1P1
Dalam reaksi berlaku kekalan massa dan kekekalan muatan.
Jumlah nomor massa dan nomor atom sebelum dan sesudah reaksi adalah sama.
Pada tahun 1937 Chadwick menembaki logam berilium dengan partikel-partikel adari unsur radioaktif. Hasilnya diperoleh karbon dan partikel netral yang kira-kira sama dengan proton. Partikel ini disebut neutron.

2a4  +  4Be9®6012  +  on1