link

Monday, March 31, 2014

Macam - macam Keseimbangan



Ada 3 macam keseimbangan, yaitu :
a.       Keseimbangan translasi apabila benda tak mempunyai percepatan linier ( a = 0 )
 F = 0
dapat diurai ke sumbu x dan y
Fx = 0   dan   Fy = 0
Fx = Resultan gaya pada komponen sumbu x.
Fy = Resultan gaya pada komponen sumbu y.

Benda yang mempunyai persyaratan tersebut mungkin :
- Diam
- Bergerak lurus beraturan.
b.      Keseimbangan rotasi, apabila benda tidak memiliki percepatan anguler atau benda tidak berputar ( = 0 )
      = 0
Benda yang mempunyai persyaratan tersebut mungkin :
- Diam
- Bergerak melingkar beraturan.
c.       Keseimbangan translasi dan rotasi, apabila benda mempunyai kedua syarat keseimbangan yaitu :
      F = 0
      = 0

KESEIMBANGAN BENDA TEGAR




Pendahuluan.
Dalam cabang ilmu fisika kita mengenal MEKANIKA.
Mekanika ini dibagi dalam 3 cabang ilmu yaitu :
a.       KINEMATIKA = Ilmu gerak
Ilmu yang mempelajari gerak tanpa mengindahkan penyebabnya.
b.      DINAMIKA = Ilmu gaya
Ilmu yang mempelajari gerak dan gaya-gaya penyebabnya.
c.       STATIKA = Ilmu keseimbangan
Ilmu yang mempelajari tentang keseimbangan benda.
Untuk cabang kinematika dan dinamika sudah dipelajari dikelas satu dan dua. Pada bab ini kita akan membahas mengenai STATIKA. dan benda-benda yang ditinjau pada bab ini dianggap sebagai benda tegar


Definisi-definisi yang harus dipahami pada statika.
a.       Keseimbangan / benda seimbang artinya :
Benda dalam keadaan diam atau pusat massanya bergerak dengan kecepatan tetap.
b.      Benda tegar : adalah suatu benda yang tidak berubah bentuk bila diberi gaya luar.
c.       Partikel : adalah benda dengan ukuran yang dapat diabaikan, sehingga benda dapat                                       digambarkan sebagai titik dan gerak yang dialami hanyalah gerak translasi.
Momen gaya : adalah kemampuan suatu gaya untuk dapat menyebabkan gerakan             rotasi. Besarnya MOMEN GAYA terhadap suatu titik sama dengan perkalian gaya dengan lengan momen.                = d . F
 = momen gaya
d = lengan momen
F = gaya
Lengan momen : adalah panjang garis yang ditarik dari titik poros sampai memotong tegak lurus garis kerja gaya.


 Perjanjian tanda untuk MOMEN GAYA.
 * Momen gaya yang searah jarum jam bertanda POSITIF.
 * Momen gaya yang berlawanan arah jarum jam bertanda NEGATIF.
g.      Koppel : adalah dua gaya yang sama besar tetapi berlawanan arah dan memiliki garis-garis kerja yang berbeda.
Momen koppel terhadap semua titik sama besar, yaitu : F . d

h.      Pasangan gaya aksi - reaksi.

W1 = Gaya berat balok                                    W2 = Gaya berat tali
Balok digantung dalam keadaan diam pada tali vertikal.
gaya W1 dan T1 bukanlah pasangan aksi - reaksi, meskipun besarnya sama, berlawanan arah dan segaris kerja.
Sedangkan yang merupakan pasangan aksi - reaksi

Sunday, March 30, 2014

waktu paruh (half life time)


SATUAN SETENGAH UMUR: (waktu paruh / half life time)
Karena adanya peluruhan jumlah unsur radioaktif, demikian pula keaktifannya akan berkurang dan pada akhirnya habis, yakni setelah seluruhnya menjadi atom stabil (tidak aktif lagi)
Selang waktu agar unsur radioaktif itu stabil (tidak aktif lagi) disebut umur unsur radioaktif.
Selang waktu agar unsur radioaktif itu tinggal separuhnya disebut setengah umur (T).
Waktu setengah umur dapat dirumuskan sebagai:
T=0,693   =  ln 2
     l                 l

 Hubungan jumlah unsur radioaktif dengan selang waktu dapat dirumuskan sebagai:

 

N = N0e-lt 

                                      R=lN

Keterangan  :
T  = waktu setengah umur
l= tetapan peluruhan (tetapan radiasi/ tergantung dari jenis zat radioaktif)
ln  = logaritma napier yang bilangan pokoknya e = 2’7183
N = jumlah unsur radioaktif setelah selang waktu t
N0 = jumlah unsur radioaktif mula-mula
R = keaktifan R A

Grafik hubungan N-T


Ada 2 (dua) macam radio aktifitas, yaitu :
alam : suatu unsur sudah bersifat radio aktif sejak ditemukannya.
Buatan: terjadinya radio aktifitas akibat suatu proses (isotop).

soal ulangan dualisme gelombang partikel



1.      Berapa joule energi foton yang panjang gelombangnya 6000 Angstrom. Tetapan Planck = 6,6 .10 –34 joule . det.
  
2.      Berkas cahaya 5000 Angstrom didatangkan pada logam Kalium. Untuk melepaskan elektron dari logam tersebut dipergunakan energi 2 eV. Berapa energi kinetik elektron yang dibebaskan ?

3.      Untuk membebaskan elektron dari Natrium diperlukan tenaga 2,14 eV.
a.       Berapakah panjang gelombang cahaya yang dapat melepaskan elektron dari logam Natrium.
b.      Dapatkah sinar-sinar yang panjang gelombangnya 0,4 Amstrong digunakan untuk membebaskan elektron dari logam tersebut ?
     
4.      Berapakah panjang gelombang elektron yang bergerak dengan kecepatan 9 .107 m/det.
5.      Berapa energi foton sinar X yang panjang gelombangnya 1 Amstrong      h = 6,6 .10-34 joule.det

6.      Berapa panjang gelombang-gelombang elektromagnetik yang energi fotonnya    2,8 .10 –19 joule.

7.      Sebuah partikel dengan muatan q dan massa m dipercepat dari keadaan diam melalui beda potensial V.
a.       Tentukan panjang gelombang de Broglie.
b.      Hitung jika partikel adalah sebuah elektron dan V = 50 Volt.
      

Saturday, March 29, 2014

Percobaan Davisson dan Germer


            Jika partikel berlaku sebagai gelombang, harus dapat ditunjukkan bahwa partikel dapat menimbulkan pola-pola difraksi seperti halnya pola-pola difraksi pada gelombang.
            Pada tahun 1927 Davisson dan Germer memilih elektron sebagai partikel untuk menguji hipotesa de Broglie. Elektron-elektron diperoleh dari filamen yang dipijarkan, kemudian elektron-elektron itu dipercepat dalam medan listrik yang tegangannya 54 Volt. Setelah dipercepat elektron-elektron memiliki energi kinetik.
Ek = 54 eV = 54 . 1,6 .10 –19 Joule
Momentum elektron :
            p = mv 
            p2 = 2m . Ek
            p = 4 .10 –24 kg m/det
Menurut de Broglie, panjang gelombang elektron :
l =  =  = 1,65 .10 –10 m
Untuk memperoleh pola difraksi diperlukan kisi-kisi yang lebar celahnya kira-kira sama dengan panjang gelombang yang akan diuji. Sebab jika celah terlampau lebar, tidak menimbulkan gangguan pada gelombang, dan jika kisi terlampau sempit, pola-pola difraksi sukar teramati.
Kisi-kisi yang tepat untuk memperoleh pola difraksi gelombang elektron adalah kisi yang terjadi secara alamiah yakni celah-celah yang berada antara deretan atom-atom kristal bahan padat, dalam hal ini dipergunakan kisi kristal nikel.
Hasil percobaan Davisson dan Germer menunjukkan bahwa elektron-elektron dapat menimbulkan pola-pola difraksi.
Kini tidak disangsikan lagi bahwa apa yang kita kenal sebagai materi dapat pula menunjukkan sifat gelombang, tepat seperti yang diramalkan oleh de Broglie

Hipotesa de Broglie


            Jika cahaya yang memiliki sifat gelombang, memiliki sifat partikel, maka wajarlah bila partikel-partikel seperti elektron memiliki sifat gelombang, demikian hipotesa yang dikerjakan oleh de Broglie (tahun 1892).
Panjang gelombang cahaya dengan frekwensi dan kecepatannya mempunyai hubungan sebagai berikut :

 l = c/f
 


Menurut Compton
pfoton = h x f /c


pfoton  = h / l                         
l = h / p
Hubungan ini berlaku pula bagi partikel, demikian usul de Broglie. Menurut de Broglie, jika ada partikel yang momentumnya p, maka partikel itu dapat bersifat sebagai gelombang dengan panjang gelombang :

l = h / p
 
                                                          
l
=
(lamda)Panjang gelombang partikel.
p 
=
Momentum partikel.

Sifat Kembar Cahaya


            Gejala-gejala interferensi dan difraksi memperlihatkan sifat gelombang yang dimiliki cahaya, dilain pihak cahaya memperlihatkan sifat sebagai paket-paket energi (foton).
Timbul suatu gagasan apakah foton itu dapat diartikan sebagai partikel-partikel.
Untuk menjawab pertanyaan ini A.H. Compton mempelajari tumbukan-tumbukan antara foton dengan elektron.
Kesimpulan yang diperolehnya menunjukkan bahwa foton dapat berlaku sebagai partikel dengan momentum.
pfoton = h.f / c
 
 


Tidak ada keraguan lagi bahwa cahaya memiliki sifat kembar, sebagai gelombang dan sebagai partikel.

Gejala Foto Listrik


            Yang dimaksud dengan gejala foto listrik adalah emisi (pancaran) elektron dari logam sebagai akibat penyinaran gelombang elektromagnetik (cahaya) pada logam tersebut.


Cahaya biasa mampu melepaskan elektron dari logam-logam alkali.
Hasil-hasil percobaan yang seksama menunjukkan bahwa :
  1. Makin besar intensitas cahaya, semakin banyak elektron-elektron yang diemisikan.
  2. Kecepatan elektron-elektron yang diemisikan hanya bergantung kepada frekwensi cahaya, makin besar frekwensi cahaya makin besar pula kecepatan elektron yang diemisikan.
  3. Pada frekwensi cahaya yang tertentu (frekwensi batas) emisi elektron dari logam tertentu sama.
Peristiwa-peristiwa di atas tidak dapat diungkap dengan teori cahaya Huygens.
Pada tahun 1901, Planck mengetengahkan hipotesa bahwa cahaya (gelombang elektromagnetik) harus dianggap sebagai paket-paket energi yang disebut foton. Besar paket energi tiap foton dirumuskan sebagai :
E = h . f
E
=
Energi tiap foton dalam Joule.
f
=
Frekwensi cahaya.
h
=
Tetapan Planck yang besarnya          h = 6,625 .10 –34 J.det
Cahaya yang intensitasnya besar memiliki foton dalam jumlah yang sangat banyak. Tiap-tiap foton hanya melepaskan satu elektron. Kiranya mudah dipahami bahwa semakin besar intensitas cahaya semakin banyak pula elektron-elektron yang diemisikan.
E = a + Ek
h . f = a + 1/2 mv2
 
Tiap foton yang datang pada logam, sebagian energinya digunakan untuk melepaskan elektron dan sebagian menjadi energi kinetik elektron. Jika energi yang diperlukan untuk melepaskan elektron sebesar a dan energi yang menjadi energi kinetik sebesar Ek maka dapat ditulis persamaan :



                                                                                      
Dari persamaan nampak jelas, makin besar frekwensi cahaya, makin besar kecepatan yang diperoleh elektron.
Bila frekwensi cahaya sedemikian sehingga h.f = a, maka foton itu hanya mampu melepaskan elektron tanpa memberi energi kinetik pada elektron. Penyinaran dengan cahaya yang frekwensi lebih kecil tidak akan menunjukkan gejala foto listrik.

Thursday, March 27, 2014

Lensa akromatik


Lensa akromatik juga bertujuan sama seperti pada prisma akromatik yaitu susunan dua buah lensa yang mampu menghilangkan peruraian warna (dispersi)


 



(nm-1)(1/R1-1/R2)  + (n’m-1)(1/R1-1/R2)(  = (nu-1)(1/R1-1/R2) + (n’u-1)((1/R1-1/R2)

                         kerona                        flinta                         kerona                       flinta